Journal of Organometallic Chemistry, 113 (1976) C11-C12 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

syn-BROMINATION OF trans-TRIPHENYLSILYLSTYRENE AND ITS anti-DEBROMOSILYLATION

A.G. BROOK, J.M. DUFF,

Department of Chemistry, University of Toronto (Canada)

P. HITCHCOCK* and R. MASON*

School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ, Sussex (Great Britain)

(Received March 26th, 1976)

Summary

Bromination of the triphenylsilylstyrenes occurs with *syn(cis)*-stereochemistry, as does debromination of the dibromide with zinc, but debromosilylation occurs with *anti(trans)*-stereochemistry.

It has been suggested previously [1], perhaps somewhat unexpectedly, that the bromination of trans-trimethylsilylstyrene occurs with syn-stereochemistry, and that debromosilylation of the dibromide occurs with anti-stereochemistry. We wish to confirm these proposals in the light of work done with *trans*-triphenylsilylstyrene. trans-Triphenylsilylstyrene [2] gives on bromination in chloroform at 0° C or in CH₂ Cl₂ at -78° C a single crystalline dibromide, m.p. 129-130°C, after recrystallization from CH₂ Cl₂, NMR (CDCl₃) δ 7.2-7.8 (m, 20 H, aryl) 4.50, 5.52, (m AB, 2 H (J 6 Hz) CH-CH) ppm. A carefully grown crystal of this material was submitted to X-ray structure analysis^{**}, which showed unambiguously that the compound had the *threo*configuration I resulting from syn(cis)-bromination^{***} (Fig. 1). Treatment of the dibromide with zinc in acetic acid/ether gave pure recovered trans-triphenylsilylstyrene, m.p. $154-155^{\circ}$ C in near quantitative yield resulting from syn-elimination with no evidence of the cis-isomer. Dissolution of the dibromide in dry DMSO in an NMR tube showed that during 20 h at 25° C complete debromosilulation involving anti-elimination occurred to yield pure

To whom correspondence should be addressed.

The crystals are triclinic, space group $A\overline{1}$, with a 15.83, b 28.24, c 10.51 A, α 89.9⁵, β 84.1, y 81.2⁵, Z = 8. R = 0.063 based on 2210 reflexions (Cu-K_a, absorption correction) with $I_{obs} > 3\sigma(I_{obs})$. The asymmetric unit contains two crystallographically non-equivalent but enantiomeric molecules.

^{**} Full details of the crystal structure will be published later by PH and RM.

Fig.1. Structure of the bromination product of trans-triphenylsilylstyrene.

trans- β -bromostyrene (no *cis* material could be detected) and hexaphenyldisiloxane, isolated in 80% yield, m.p. 223-224°C.

The results establish the following stereochemistry as occurring, and completely confirm the proposals of Koenig and Weber regarding related reactions of the trimethylsilylstyrenes.

cis-Triphenylsilylstyrene synthesized by partial hydrogenation of triphenylsilylphenylacetylene [3] gave an isomeric dibromide, m.p. $122-124^{\circ}C$, NMR (CDCl₃) δ 7.1-7.7 (m, 20 H, aryl), 4.81, 5.46 (m, AB, J 6.5 Hz) CH-CH) ppm, which on debromination gave a 56:44 mixture of cis- and trans-triphenylsilylstyrene respectively, and which gave on treatment with DMSO pure cis- β -bromostyrene.

Further results obtained with these and other vinylsilanes will be given in the full paper.

References

- 1 K.E. Koenig and W.P. Weber, Tetrahedron Lett., (1973) 2533.
- 2 R.A. Benkeser and R.A. Hickner, J. Amer. Chem. Soc., 80 (1958) 5298.
- 3 H. Gilman, A.G. Brook and L.S. Miller, J. Amer. Chem. Soc., 75 (1973) 3757.